ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
MURR expansion set back by Mo. state legislature
Spirits were high last month when a ribbon cutting was held at the University of Missouri for a $20 million, three-story, 47,000-square-foot addition, dubbed MURR West, to the MURR research reactor facilities.
Rohan Puri, George H. Miley, Erik P. Ziehm, Raul Patino, Raad Najam
Nuclear Technology | Volume 208 | Number 1 | December 2022 | Pages S85-S95
Technical Paper | doi.org/10.1080/00295450.2022.2055702
Articles are hosted by Taylor and Francis Online.
The Helicon Injected Inertial Plasma Electrostatic Rocket (HIIPER) is a space propulsion system developed at the University of Illinois Urbana-Champaign. The HIIPER couples a helicon tube with an inertial electrostatic confinement (IEC) fusion system. Its operating principle involves a helicon ionization stage followed by an electrostatic grid (IEC cathode grid) extraction stage. The helicon setup used in the HIIPER is modified to include a helicon bias grid at the upstream end of the tube. This grid is applied with a positive direct-current voltage to increase the plasma potential and the most probable ion energy of the plasma injected into the IEC fusion chamber. The IEC cathode grid in the HIIPER uses an innovative asymmetric design, graphically depicted through a computational model, that ejects a stream of electrons that accelerate the exhaust ions and simultaneously neutralize the exhaust jet. The model is also used to plot ion trajectories inside the HIIPER to identify any wall collision losses. A separate numerical study was undertaken to show augmentation of plasma kinetic energy on adding a magnetic nozzle as the final propulsion stage of the HIIPER. Experimental results were used to establish a relation between the input parameters and the ion density of the resulting plasma. Langmuir probe measurements were performed at two locations to validate corresponding computational results, indicating ion losses due to ion-wall collisions inside the helicon-IEC coupling. The results in this study add to the proof of concept of the HIIPER and allow for designing an upgrade of the propulsion system. Increasing thrust while maintaining plasma densities between 1017 and 1018 throughout the system is the current aim of HIIPER research. This study summarizes the various performance parameters of the propulsion system, along with a discussion of ongoing research and future scope.