ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Emory D. Collins, Robert N. Morris, Joel L. McDuffee, Padhraic L. Mulligan, Jeffrey S. Delashmitt, Steven R. Sherman, Raymond J. Vedder, Robert M. Wham
Nuclear Technology | Volume 208 | Number 1 | December 2022 | Pages S18-S25
Technical Paper | doi.org/10.1080/00295450.2021.2021769
Articles are hosted by Taylor and Francis Online.
An alternative target design with potential improvements, including a major increase in 238Pu production rate and annual capacity; fewer targets to be fabricated, irradiated, and processed; and a significant replacement of a large volume of caustic-nitrate, aluminum-bearing radioactive liquid waste with a smaller volume of solid metal waste, has been conceived and evaluated using reactor physics and thermal-hydraulic analyses. The alternative target design uses pressed pellets of 237NpO2, sintered to 92% to 93% of theoretical density, and stacked inside a Zircaloy-4 cladding tube. Four test targets were fabricated, irradiated, and examined. No melting or other potential problems were indicated. Projections from measured constituents indicated annual production could be increased by a factor of ~2, and the number of targets required to be fabricated, irradiated, and processed could be reduced by a factor of ~5.