ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Jarrod M. Gogolski, Kathryn M. L. Taylor-Pashow, Tracy S. Rudisill, Michael L. Restivo, John M. Pareizs, Robert J. Lascola, Patrick E. O’Rourke, William. E. Daniel
Nuclear Technology | Volume 208 | Number 12 | December 2022 | Pages 1867-1875
Technical Paper | doi.org/10.1080/00295450.2022.2092358
Articles are hosted by Taylor and Francis Online.
The dissolution of used nuclear fuel generates a variety of off-gasses including flammable hydrogen and other species that are a concern for environmental release. The H-Canyon facility at the Savannah River Site is currently dissolving aluminum-clad research reactor fuel from material test reactors and the High Flux Isotope Reactor (HFIR) using a mercury-catalyzed nitric acid flowsheet. Savannah River National Laboratory recently developed and deployed a Raman spectrometer to monitor the off-gas stream from the dissolution process. Results from these measurements indicated a lack of the expected hydrogen, nitrous oxide, and nitric oxide in the off-gas stream. It was proposed that the silver on the silver nitrate–coated berl saddles present in the reactors for iodine capture were acting as a catalytic hydrogen recombiner. Nitric oxide is readily oxidized to nitrogen dioxide under normal conditions, but it was unclear what happened to the nitrous oxide. A laboratory-scale iodine reactor was assembled and filled with silver nitrate–coated berl saddles to help ascertain the fate of nitrous oxide and hydrogen. Testing with this laboratory-scale reactor observed the recombination of hydrogen when a simulated dissolver off-gas was passed through the reactor containing silver nitrate–coated berl saddles at the approximate temperatures seen in H-Canyon. However, the nitrous oxide concentration was unchanged, suggesting a more complex process occurring within the off-gas stream before it reaches the iodine reactors at H-Canyon.