ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
Zixu Xu, Guofeng Qu, Min Yan, Su Shen, Yu Huang, Xin Zhang, Lei Chen, Xingquan Liu, Jifeng Han
Nuclear Technology | Volume 208 | Number 12 | December 2022 | Pages 1847-1857
Technical Paper | doi.org/10.1080/00295450.2022.2076489
Articles are hosted by Taylor and Francis Online.
The performance of a prompt gamma neutron activation analysis (PGNAA) system for lower-weight landmine detection is investigated in this study. A total of 2880 characteristic gamma-ray spectra of 10 buried samples (five explosives and five nonexplosives), within a weight range of 0.01 to 10 kg and a hidden depth of 2.5 to 15 cm, under 0%, 10%, and 20% soil moisture conditions, were generated using Monte Carlo N-Particle Code 5 (MCNP5). The conventional characteristic peak analysis method was not applicable to lower-weight sample detection. The discrimination accuracy was acceptable only under 0% soil moisture when explosives exceeded 2 kg with the discrimination accuracy exceeding 80%. Four machine learning models, including radial basis function (RBF) neural network, fully connected neural network, XGBoost, and LightGBM, were used to perform whole-spectrum analysis, and better performance was demonstrated. The discrimination accuracy exceeded 90% in most cases, and the RBF neural network was demonstrated to be the best performance (96.6% for explosives and 95.1% for nonexplosives). All four of these models were insensitive to soil moisture. The minimum detectable weight of 0.02 kg for the simulation data provided valuable reference for experimental applications. These results indicate that machine learning was an effective method for lower-weight landmine detection using PGNAA under complicated conditions.