ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Zixu Xu, Guofeng Qu, Min Yan, Su Shen, Yu Huang, Xin Zhang, Lei Chen, Xingquan Liu, Jifeng Han
Nuclear Technology | Volume 208 | Number 12 | December 2022 | Pages 1847-1857
Technical Paper | doi.org/10.1080/00295450.2022.2076489
Articles are hosted by Taylor and Francis Online.
The performance of a prompt gamma neutron activation analysis (PGNAA) system for lower-weight landmine detection is investigated in this study. A total of 2880 characteristic gamma-ray spectra of 10 buried samples (five explosives and five nonexplosives), within a weight range of 0.01 to 10 kg and a hidden depth of 2.5 to 15 cm, under 0%, 10%, and 20% soil moisture conditions, were generated using Monte Carlo N-Particle Code 5 (MCNP5). The conventional characteristic peak analysis method was not applicable to lower-weight sample detection. The discrimination accuracy was acceptable only under 0% soil moisture when explosives exceeded 2 kg with the discrimination accuracy exceeding 80%. Four machine learning models, including radial basis function (RBF) neural network, fully connected neural network, XGBoost, and LightGBM, were used to perform whole-spectrum analysis, and better performance was demonstrated. The discrimination accuracy exceeded 90% in most cases, and the RBF neural network was demonstrated to be the best performance (96.6% for explosives and 95.1% for nonexplosives). All four of these models were insensitive to soil moisture. The minimum detectable weight of 0.02 kg for the simulation data provided valuable reference for experimental applications. These results indicate that machine learning was an effective method for lower-weight landmine detection using PGNAA under complicated conditions.