ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
November 2024
Nuclear Technology
Fusion Science and Technology
Latest News
Keeping up with Kewaunee
In October 2012, Dominion Energy announced it was closing the Kewaunee nuclear power plant, a two-loop 574-MWe pressurized water reactor located about 27 miles southeast of Green Bay, Wis., on the western shore of Lake Michigan. At the time, Dominion said the plant was running well, but that low wholesale electricity prices in the region made it uneconomical to continue operation of the single-unit merchant power plant.
Yuxuan Liu, Brendan Kochunas, Tat Nghia Nguyen, Hubert Ley, Richard Vilim
Nuclear Technology | Volume 208 | Number 12 | December 2022 | Pages 1832-1846
Technical Paper | doi.org/10.1080/00295450.2022.2092357
Articles are hosted by Taylor and Francis Online.
Advances in reducing operations and maintenance (O&M) costs are crucial to improving the viability of the nuclear energy industry. One of the important aspects to reduce the cost of maintenance activities in nuclear power plants is to automate equipment monitoring and fault diagnoses. As an inverse problem to fault diagnoses, finding a suitable population of sensors that enable a requisite degree of monitoring capability, preferably at low cost, is a prerequisite that ensures a successful monitoring and diagnosis capability. This work develops an optimization tool for the sensor assignment problem of thermal-hydraulic systems that minimizes the cost for a required diagnosing capability. The optimization is driven by a genetic algorithm (GA), with its parameters tuned by Bayesian optimization (BO). Compared to the conventional GA parameter-tuning approach based on experimental designs, the BO-tuned parameters show better performance for the test problem with various allocated computing resources. It is also verified that the BO-tuned parameters perform better for several problem variants based on the original test problem, which has practical values in meeting additional engineering goals in the sensor assignment process.