ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
April 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Robotics milestone reached at Sellafield
Sellafield Ltd. and AtkinsRéalis have successfully operated a robotic dog from a remote location in what might be the first time such an operation has happened at a nuclear licensed site, according to the companies in a March 18 press release.
Sunil Kumar Jatav, Vijay Kumar Pandey, Parimal P. Kulkarni, Arun K. Nayak, Upender Pandel, Rajendra K. Duchaniya
Nuclear Technology | Volume 208 | Number 11 | November 2022 | Pages 1756-1768
Technical Paper | doi.org/10.1080/00295450.2022.2061291
Articles are hosted by Taylor and Francis Online.
To mitigate severe accidents in nuclear reactors, the present research sheds light on the melt-coolability behavior of corium with hypothetical experiments that have been performed at two different nozzle diameters under bottom flooding conditions. In this research, a simulant material CaO-Fe2O3 powder mixture was melted and poured into the test section that was embedded in the test facility (using a bottom pouring furnace instead of a tiltable furnace). Then, from the bottom of the melt pool, water was flooded through a nozzle at a pressure of 0.70 bar and a water flow rate of 12 liters per minute. Because of the interaction between the water and melt, the melt quenched and converted into fine porous debris, and the temperature history was recorded using 12 K-type thermocouples connected to a data acquisition system. The average quenching time and porosity of the debris were affected by variations in the nozzle diameter. This research will help in understanding real core-melt accidents that generally occur in nuclear power plants.