ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2024
Jan 2024
Latest Journal Issues
Nuclear Science and Engineering
November 2024
Nuclear Technology
October 2024
Fusion Science and Technology
Latest News
Tank waste operations resume at Idaho’s IWTU
The Department of Energy’s Office of Environmental Management announced yesterday that waste processing operations have resumed at the Integrated Waste Treatment Unit (IWTU) at the Idaho National Laboratory Site. The resumption of operations follows the completion of two maintenance campaigns at the radioactive liquid waste treatment facility.
Lowie Brabants, Mattias Simons, David de Schepper, Eric Demeester, Wouter Schroeyers
Nuclear Technology | Volume 208 | Number 11 | November 2022 | Pages 1681-1695
Technical Paper | doi.org/10.1080/00295450.2022.2073950
Articles are hosted by Taylor and Francis Online.
This study determines the minimal detection time (MDT) needed for successful localization of radioactive hot spots during nuclear decommissioning work. An automated XY stage, equipped with a CdZnTe (CZT) spectrometer, was used to identify and localize hot spots of 241Am, 137Cs, and 60Co in a 1.7 × 1.7-m area. The stage served as a preliminary test platform for the development of an automated robotic characterization platform [Autonomous Robotic platform for CHaractERization (ARCHER) robot]. The dependence of the MDT on the detector efficiency and background (BKG) level was examined. For low BKG environments, the MDT for 137Cs was 871 ms and resulted in an error of the source localization of 14.21 mm and an error of the activity of 6.85%. For elevated BKG levels, the MDT increased to 15 526 ms. The 137Cs source was localized with an error of 34.13 mm and an error of the source activity of −7.04%. The MDT determination method used here offers a valuable approach for decreasing total scanning times while avoiding missing the presence of hot spots.