ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Fawzy Hammad Sallam, Eman Mohamed Ibrahim, Sayed Fahmy Hassan, A. Omar
Nuclear Technology | Volume 208 | Number 11 | November 2022 | Pages 1666-1680
Technical Paper | doi.org/10.1080/00295450.2022.2072650
Articles are hosted by Taylor and Francis Online.
The shielding characteristics of natural bentonite can be enhanced based on calcination and ball-milling processes for protection against gamma radiation. The calcination process increases the content of the oxide, which enhances the mass attenuation coefficient; however, the elimination of water and organic matter from bentonite clay structures increases the particle size, where large particle size has a negative effect on this mass attenuation coefficient. Therefore, the calcinated bentonite has been ball-milled to reduce the particle size and improve the attenuation properties of natural bentonite. Furthermore, the calcination process occurs at 700°C for 2 h because dehydration is completed above 500°C while dehydroxylation is observed at 700°C. Therefore, the shielding parameters have been determined for calcinated, ball-milled, pressed bentonite clay samples according to different gamma-ray energies (662, 1173, and 1332 keV), where the experimental setup is based on narrow beam transmission techniques with two sources (137Cs and 60Co). In addition, the particle size of bentonite clay has been characterized using X-ray diffraction patterns depending on two different methods: dynamic light scattering and Williamson-Hall size analyses. This study shows that the calcinated, ball-milled bentonite pressed at 150 bar has the highest linear and mass attenuation coefficients of μ = 0.13 cm−1 and μm = 0.082 cm2/gm, respectively. Moreover, the experimental and theoretical investigation of the mass attenuation coefficient is in good agreement.