ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
November 2024
Nuclear Technology
Fusion Science and Technology
Latest News
Remembering ANS President John Kelly
John Kelly, ANS past president (2018–19 ), passed away peacefully in his sleep on October 3, 2024, in Gilbert Ariz., at the age of 70. Kelly was born on March 9, 1954, and was the eldest of Jack and Aileen Kelly’s six children.
His career, which spanned more than 40 years, began at Sandia National Laboratories in Albuquerque, N.M., where he focused on safety and severe accident analysis. His leadership led him to Washington D.C., where he served as the deputy assistant secretary for nuclear reactor technologies at the U.S. Department of Energy. Kelly played a critical role in shaping nuclear policy and guiding the world through significant events, including the Fukushima Daiichi accident in Japan. At the end of his career, he was honored to serve as the American Nuclear Society’s president. In retirement, he was actively involved with ANS in technology events and mentoring the next generation of scientists.
Kelly is survived by his wife, Suzanne; his children Julie Kelly-Smith (Byron), John A. (Sarah), and Michael (Nicole); and grandchildren Kiri and Kyson Smith and John and Maximilian Kelly. His family was his pride and joy, including his cherished dog, Covie, who brought him happiness in recent years.
In lieu of flowers, donations may be made to the American Nuclear Society or Detroit Catholic Central High School (27225 Wixom Road, Novi, MI 48374). Please designate Memorial and specify John Kelly ’72 Memorial Fund.
In honor of Kelly's commitment to ANS and to celebrate his life, his profile from the July 2018 issue of Nuclear News is published below.
Fawzy Hammad Sallam, Eman Mohamed Ibrahim, Sayed Fahmy Hassan, A. Omar
Nuclear Technology | Volume 208 | Number 11 | November 2022 | Pages 1666-1680
Technical Paper | doi.org/10.1080/00295450.2022.2072650
Articles are hosted by Taylor and Francis Online.
The shielding characteristics of natural bentonite can be enhanced based on calcination and ball-milling processes for protection against gamma radiation. The calcination process increases the content of the oxide, which enhances the mass attenuation coefficient; however, the elimination of water and organic matter from bentonite clay structures increases the particle size, where large particle size has a negative effect on this mass attenuation coefficient. Therefore, the calcinated bentonite has been ball-milled to reduce the particle size and improve the attenuation properties of natural bentonite. Furthermore, the calcination process occurs at 700°C for 2 h because dehydration is completed above 500°C while dehydroxylation is observed at 700°C. Therefore, the shielding parameters have been determined for calcinated, ball-milled, pressed bentonite clay samples according to different gamma-ray energies (662, 1173, and 1332 keV), where the experimental setup is based on narrow beam transmission techniques with two sources (137Cs and 60Co). In addition, the particle size of bentonite clay has been characterized using X-ray diffraction patterns depending on two different methods: dynamic light scattering and Williamson-Hall size analyses. This study shows that the calcinated, ball-milled bentonite pressed at 150 bar has the highest linear and mass attenuation coefficients of μ = 0.13 cm−1 and μm = 0.082 cm2/gm, respectively. Moreover, the experimental and theoretical investigation of the mass attenuation coefficient is in good agreement.