ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Nuclear energy for maritime shipping and coastal applications
The Boston-based Deon Policy Institute has published a white paper that examines the applications of nuclear energy in the maritime sector—specifically, floating nuclear power plants and nuclear propulsion for commercial vessels. Topics covered include available technologies, preliminary cost estimates, and a status update on the regulatory framework.
Unique opportunity: The paper points out that nuclear energy has the potential to benefit the shipping industry with high energy efficiency, lower operating costs, and zero carbon emissions. The report has a special focus on Greece, a nation that controls about 20 percent of the global commercial fleet and thus has an opportunity to take a leading role in the transition to nuclear-powered shipping.
Zhibo Zhang, Huai-En Hsieh, Yuan Gao, Shiqi Wang, Zhe Zhou
Nuclear Technology | Volume 208 | Number 10 | October 2022 | Pages 1605-1618
Technical Paper | doi.org/10.1080/00295450.2022.2053927
Articles are hosted by Taylor and Francis Online.
This paper discusses the estimation of heat transfer characteristics using different SiO2 nanofluid conditions on a downward-facing heating surface. Two sizes of SiO2 nanoparticles (20 and 50 nm) were selected for the nanofluids. The influence of the critical heat flux (CHF) for different nanofluid concentrations was also compared and investigated. We observed that the CHF changed with the concentration of nanofluids, which reached the maximum enhancement at 0.1 g/L but decreased at 0.12 g/L. Compared with reverse osmosis water, the 50- and 20-nm SiO2 nanofluids exhibited enhancements of approximately 43% and 49%, respectively. The heating surface was characterized and the deposition of nanoparticles was observed. After pool boiling, the wettability of the heating block and the roughness changed. As the concentration increased, the CHF decreased after attaining the maximum value, which was due to the characteristics of the downward-facing heating surface and the decrease in the nucleation points on the heating block surface.