ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2023)
February 6–9, 2023
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2023
Jul 2022
Latest Journal Issues
Nuclear Science and Engineering
February 2023
Nuclear Technology
Fusion Science and Technology
January 2023
Latest News
Nuclear energy: enabling production of food, fiber, hydrocarbon biofuels, and negative carbon emissions
In the 1960s, Alvin Weinberg at Oak Ridge National Laboratory initiated a series of studies on nuclear agro-industrial complexes1 to address the needs of the world’s growing population. Agriculture was a central component of these studies, as it must be. Much of the emphasis was on desalination of seawater to provide fresh water for irrigation of crops. Remarkable advances have lowered the cost of desalination to make that option viable in countries like Israel. Later studies2 asked the question, are there sufficient minerals (potassium, phosphorous, copper, nickel, etc.) to enable a prosperous global society assuming sufficient nuclear energy? The answer was a qualified “yes,” with the caveat that mineral resources will limit some technological options. These studies were defined by the characteristic of looking across agricultural and industrial sectors to address multiple challenges using nuclear energy.
Shinsuke Tashiro, Takuya Ohno, Yuki Amano, Ryoichiro Yoshida, Koji Watanabe, Hithoshi Abe
Nuclear Technology | Volume 208 | Number 10 | October 2022 | Pages 1553-1561
Technical Paper | doi.org/10.1080/00295450.2022.2045179
Articles are hosted by Taylor and Francis Online.
To contribute to the confinement safety evaluation of radioactive materials in a glove box (GB) fire accident, combustion tests with polymethyl methacrylate (PMMA) and polycarbonate (PC) as typical panel materials for the GB have been conducted with a relatively large-scale apparatus. As important data for evaluating confinement safety, the release ratio and the particle size distribution of soot generated from burned materials as source term data for analyzing the migration behavior of soot particles were obtained. Furthermore, the effect of soot loading on the rise of the different pressure (ΔP) of the high efficiency particulate air (HEPA) filter ΔP was also investigated. The results showed that the release ratio of the soot generated from the burned PC was about seven times as large as PMMA and the relatively large particles of the soot from PC were also larger than PMMA. In addition, by considering the effect of the loading volume of the soot particles in the relatively low loading region of the soot, it was found that the behavior of the rise of ΔP accompanied with soot loading could be represented uniformly regardless of the kinds of combustion materials.