ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Shengyuan Yan, Kai Yao, Fengjiao Li, Yingying Wei, Cong Chi Tran
Nuclear Technology | Volume 208 | Number 10 | October 2022 | Pages 1540-1552
Technical Paper | doi.org/10.1080/00295450.2022.2049965
Articles are hosted by Taylor and Francis Online.
The accurate assessment of human error probability (HEP) has an important impact on the safety of nuclear power plants. Therefore, it is necessary to develop a HEP model. This study analyzes the validity, sensitivity, and relationship between HEP and the indices of eye response and the subjective rating method. The analysis result showed that there is a correlation between HEP and the indices of eye response, subjective workload, and situation awareness level. Therefore, a back propagation neural network model was developed based on these indices. The correlation coefficient is more than 0.95 between the predicted data of the developed model and the target data. Also, the root mean square error was 0.0073, 0.0083, and 0.0077, and the determination coefficient was 0.965, 0.933, and 0.931 for the training, validation, and testing data sets, respectively. Therefore, the developed back propagation neural network model has reliable prediction accuracy for HEP.