ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
EnergySolutions to help explore advanced reactor development in Utah
Utah-based waste management company EnergySolutions announced that it has signed a memorandum of understating with the Intermountain Power Agency and the state of Utah to explore the development of advanced nuclear power generation at the Intermountain Power Project (IPP) site near Delta, Utah.
Shengyuan Yan, Kai Yao, Fengjiao Li, Yingying Wei, Cong Chi Tran
Nuclear Technology | Volume 208 | Number 10 | October 2022 | Pages 1540-1552
Technical Paper | doi.org/10.1080/00295450.2022.2049965
Articles are hosted by Taylor and Francis Online.
The accurate assessment of human error probability (HEP) has an important impact on the safety of nuclear power plants. Therefore, it is necessary to develop a HEP model. This study analyzes the validity, sensitivity, and relationship between HEP and the indices of eye response and the subjective rating method. The analysis result showed that there is a correlation between HEP and the indices of eye response, subjective workload, and situation awareness level. Therefore, a back propagation neural network model was developed based on these indices. The correlation coefficient is more than 0.95 between the predicted data of the developed model and the target data. Also, the root mean square error was 0.0073, 0.0083, and 0.0077, and the determination coefficient was 0.965, 0.933, and 0.931 for the training, validation, and testing data sets, respectively. Therefore, the developed back propagation neural network model has reliable prediction accuracy for HEP.