ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
Patrick Maedgen, Benjamin Wellons, Shikha Prasad, Jian Tao
Nuclear Technology | Volume 208 | Number 10 | October 2022 | Pages 1522-1539
Technical Paper | doi.org/10.1080/00295450.2022.2045533
Articles are hosted by Taylor and Francis Online.
Various machine learning techniques have been implemented to assist in neutron-gamma discrimination with great success compared to traditional methods. Despite this, the fundamental structure of a pulse shape as it relates to machine learning has not yet been explored in detail, and the optimal number of pulse vector features needed for training is still unknown. In this study, support vector machines (SVMs) using linear, radial basis, and exponential kernel functions are fitted on data of two different forms: waveforms that partially cover the original pulses and principal components extracted from those pulses. The described methods correctly classified 98.02% for neutrons and 97.84% for gamma rays. The efficiency of the SVM was improved by extracting principal components from the waveforms. That is, fewer features were needed to discriminate between neutrons and gamma rays without negatively impacting the classification accuracy. This study also shows that utilizing a nonlinear kernel significantly reduces the number of features required to reach high classification accuracy. SVMs that did this could make accurate classifications 97% of the time with data that had fewer than 50 features.