ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Alberto Talamo, S. N. P. Vegendla, A. Bergeron, F. Heidet, B. Ade, B. R. Betzler
Nuclear Technology | Volume 208 | Number 9 | September 2022 | Pages 1433-1452
Technical Paper | doi.org/10.1080/00295450.2022.2033596
Articles are hosted by Taylor and Francis Online.
This work presents multiphysics analyses on the bottom components of the Transformational Challenge Reactor (TCR) facility. These components include the bottom axial reflector and the steel exit cone. The bottom axial reflector is made of pure silicon carbide elements hosting helium cooling channels. These elements are three-dimensional (3D) printed, and therefore can host any arbitrary shape of the helium cooling channels. The design of the bottom reflector considers the neutronics and thermofluid dynamics performances as well as the manufacturing process optimization. More precisely, the best design of the bottom reflector reduces neutron leakage by avoiding straight cylindrical helium channels that facilitate neutron leakage, minimizes the helium flow pressure drop, and reduces the number of 3D printed silicon carbide pieces. The exit cone steel structure collects the hot helium from the bottom fuel assemblies and channels the cold helium to the top of the fuel assemblies. The steel’s simultaneous contact with hot and cold helium flows sets a large thermal gradient. Different designs of the exit cone are proposed to reduce the steel equivalent stress from the helium thermal load. The multiphysics analyses have been performed using Ansys Fluent, Ansys Mechanical, STAR-CCM+, and Serpent computer programs.