ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
Alberto Talamo, S. N. P. Vegendla, A. Bergeron, F. Heidet, B. Ade, B. R. Betzler
Nuclear Technology | Volume 208 | Number 9 | September 2022 | Pages 1433-1452
Technical Paper | doi.org/10.1080/00295450.2022.2033596
Articles are hosted by Taylor and Francis Online.
This work presents multiphysics analyses on the bottom components of the Transformational Challenge Reactor (TCR) facility. These components include the bottom axial reflector and the steel exit cone. The bottom axial reflector is made of pure silicon carbide elements hosting helium cooling channels. These elements are three-dimensional (3D) printed, and therefore can host any arbitrary shape of the helium cooling channels. The design of the bottom reflector considers the neutronics and thermofluid dynamics performances as well as the manufacturing process optimization. More precisely, the best design of the bottom reflector reduces neutron leakage by avoiding straight cylindrical helium channels that facilitate neutron leakage, minimizes the helium flow pressure drop, and reduces the number of 3D printed silicon carbide pieces. The exit cone steel structure collects the hot helium from the bottom fuel assemblies and channels the cold helium to the top of the fuel assemblies. The steel’s simultaneous contact with hot and cold helium flows sets a large thermal gradient. Different designs of the exit cone are proposed to reduce the steel equivalent stress from the helium thermal load. The multiphysics analyses have been performed using Ansys Fluent, Ansys Mechanical, STAR-CCM+, and Serpent computer programs.