ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2023)
February 6–9, 2023
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2023
Jul 2022
Latest Journal Issues
Nuclear Science and Engineering
February 2023
Nuclear Technology
Fusion Science and Technology
January 2023
Latest News
Nuclear energy: enabling production of food, fiber, hydrocarbon biofuels, and negative carbon emissions
In the 1960s, Alvin Weinberg at Oak Ridge National Laboratory initiated a series of studies on nuclear agro-industrial complexes1 to address the needs of the world’s growing population. Agriculture was a central component of these studies, as it must be. Much of the emphasis was on desalination of seawater to provide fresh water for irrigation of crops. Remarkable advances have lowered the cost of desalination to make that option viable in countries like Israel. Later studies2 asked the question, are there sufficient minerals (potassium, phosphorous, copper, nickel, etc.) to enable a prosperous global society assuming sufficient nuclear energy? The answer was a qualified “yes,” with the caveat that mineral resources will limit some technological options. These studies were defined by the characteristic of looking across agricultural and industrial sectors to address multiple challenges using nuclear energy.
Hattan Natto, Haori Yang
Nuclear Technology | Volume 208 | Number 9 | September 2022 | Pages 1382-1392
Technical Paper | doi.org/10.1080/00295450.2022.2035478
Articles are hosted by Taylor and Francis Online.
Cherenkov detectors have been developed and used in several fields since the discovery of Cherenkov radiation. They do have several advantages compared with other detector types, such as low noise due to the low-energy threshold of Cherenkov radiation and short decay constant (on the order of picoseconds). However, the light yield of Cherenkov detectors is low. Only several hundreds of Cherenkov photons can be generated per megaelectron-volt. The objective of this work is to manufacture and test Cherenkov glass detectors for detection of high-energy gammas. The focus is to improve the light output of Cherenkov detectors by implementing wavelength shifting (WLS) fibers inside the glass samples. Without the WLS materials, most Cherenkov photons are likely to be absorbed within the glass sample before they can reach the photon sensor. WLS fibers do not directly increase the number of Cherenkov photons, but they can reduce the energy of Cherenkov photons and direct them toward the photon sensor. This photon energy reduction helps increase the efficiency of light collection and improves matching between the photon wavelength and photon detector quantum efficiency.