ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
November 2024
Nuclear Technology
Fusion Science and Technology
Latest News
The DOE picks six HALEU deconverters. What have we learned?
The Department of Energy announced contracts yesterday for six companies to perform high-assay low-enriched uranium (HALEU) deconversion and to transform enriched uranium hexafluoride (UF6) to other chemical forms, including metal or oxide, for storage before it is fabricated into fuel for advanced reactors. It amounts to a first round of contracting. “These contracts will allow selected companies to bid on work for deconversion services,” according to the DOE’s announcement, “creating strong competition and allowing DOE to select the best fit for future work.”
Arvind Sundaram, Yeni Li, Hany Abdel-Khalik
Nuclear Technology | Volume 208 | Number 9 | September 2022 | Pages 1365-1381
Technical Paper | doi.org/10.1080/00295450.2022.2027147
Articles are hosted by Taylor and Francis Online.
The widespread digitization of critical industrial systems such as nuclear reactors has led to the development of digital twins and/or the adoption of artificial intelligence techniques for simulating baseline behavior and performing predictive maintenance. Such analytical tools, referred to as anomaly detection techniques, rely on features extracted from data that describe the underlying physical process. While these anomaly detection systems may work well with simulated data, their real-world applications are often hindered by the presence of noise. In some cases, noise may obscure subtle anomalies that may carry information about incipient stages of system faults. These subtle variations may also be the result of malicious intrusion such as so-called false data injection attack, equipment degradation causing sensor drift, or other natural disturbances in the process or the sensors. Consequently, there is a need to extract features that are robust to noise and also denoise data in a manner that aids machine-learning (ML) tools in diagnostics. In this regard, this paper presents a singular value decomposition–based statistical data–driven approach for feature extraction, denoted by randomized window decomposition, to capture the underlying physics of the system. Additionally, the features are used to denoise data to reveal subtle anomalies while also preserving relevant information for ML algorithms. The denoising algorithm is demonstrated using a RELAP5 simulation of a representative nuclear reactor with virtual noise.