ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
Ziping Liu, Yu Ji, Han Zhang, Jun Sun
Nuclear Technology | Volume 208 | Number 8 | August 2022 | Pages 1337-1351
Technical Paper | doi.org/10.1080/00295450.2022.2031498
Articles are hosted by Taylor and Francis Online.
Composite materials are essential in various energy fields owing to their improved heat transfer characteristics. Due to their inhomogeneous structure, it is difficult to obtain the heat transfer details. Effective thermal conductivity (ETC) is an important lumped thermal parameter used to analyze the heat transfer process in composite materials. Existing ETC models are derived by applying a temperature difference (TD) on two opposite boundaries of the composite material to induce heat flow. However, for some composite materials, such as nuclear fuels, the effect of the inner heat source (IHS) is typically ignored. Thus, the suitability of using ETC models based on a TD scheme for composite materials with IHS still requires further investigation. In this study, first the conserved quantities of ETC of the TD and IHS schemes were determined. For normal materials of the TD scheme, the conserved quantity of ETC can be selected as heat flow, whereas for nuclear fuels of the IHS scheme, the average temperatures are recommended as the conserved quantity. Then the general ETC models for composite plate were derived considering both the TD and IHS schemes and special cases with either TD or IHS were also analyzed. Finally, based on the results of this study, the idea of studying the ETC of tristructural-isotropic or TRISO particle-based nuclear fuels is proposed.