ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Ziping Liu, Yu Ji, Han Zhang, Jun Sun
Nuclear Technology | Volume 208 | Number 8 | August 2022 | Pages 1337-1351
Technical Paper | doi.org/10.1080/00295450.2022.2031498
Articles are hosted by Taylor and Francis Online.
Composite materials are essential in various energy fields owing to their improved heat transfer characteristics. Due to their inhomogeneous structure, it is difficult to obtain the heat transfer details. Effective thermal conductivity (ETC) is an important lumped thermal parameter used to analyze the heat transfer process in composite materials. Existing ETC models are derived by applying a temperature difference (TD) on two opposite boundaries of the composite material to induce heat flow. However, for some composite materials, such as nuclear fuels, the effect of the inner heat source (IHS) is typically ignored. Thus, the suitability of using ETC models based on a TD scheme for composite materials with IHS still requires further investigation. In this study, first the conserved quantities of ETC of the TD and IHS schemes were determined. For normal materials of the TD scheme, the conserved quantity of ETC can be selected as heat flow, whereas for nuclear fuels of the IHS scheme, the average temperatures are recommended as the conserved quantity. Then the general ETC models for composite plate were derived considering both the TD and IHS schemes and special cases with either TD or IHS were also analyzed. Finally, based on the results of this study, the idea of studying the ETC of tristructural-isotropic or TRISO particle-based nuclear fuels is proposed.