ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
FERC rejects interconnection deal for Talen-Amazon data centers
The Federal Energy Regulatory Commission has denied plans for Talen Energy to supply additional on-site power to an Amazon Web Services’ data center campus from the neighboring Susquehanna nuclear plant in Pennsylvania.
Donna Post Guillen, Clayton G. Turner
Nuclear Technology | Volume 208 | Number 8 | August 2022 | Pages 1301-1310
Technical Paper | doi.org/10.1080/00295450.2021.1977085
Articles are hosted by Taylor and Francis Online.
New nuclear reactor designs that incorporate heat pipes are being investigated for possible near-term deployment in terrestrial applications. This study explores the use of screen-covered axially grooved sodium heat pipes and their applicability for providing heat removal for microreactors. A sodium working fluid is appropriate for microreactors operating in the 5 to 20 MW(thermal) range at approximately 650°C. HTPIPE, a legacy software code, was validated for the case of screen-covered grooves and used to perform steady-state analyses to determine the performance limits of a proposed heat pipe design. The performance limits of a sodium heat pipe with a screen-covered square grooved wick structure is compared to that of an equivalent heat pipe with an annular wick. In a horizontal orientation at an operating temperature of 650°C,the performance limits for the heat pipe with an annular wick configuration are 15% higher than for the screen-covered grooved wick. At operating temperatures below 777°C, the annular wick outperforms the screen-covered grooved wick, and at temperatures above 777°C, the screen-covered grooved wick outperforms the annular wick. However, the marginal performance gain at higher temperatures may not justify the use of heat pipes with a screen-covered grooved wick structure due to increased manufacturing costs.