ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Mustafa H. Almadih, T. Almudhhi, S. Ebrahim, A. Howell, G. R. Garrett, S. M. Bajorek, F. B. Cheung
Nuclear Technology | Volume 208 | Number 8 | August 2022 | Pages 1290-1300
Technical Paper | doi.org/10.1080/00295450.2021.2000558
Articles are hosted by Taylor and Francis Online.
In this study, boiling regimes have been identified and analyzed along with the corresponding vapor-liquid interfacial morphologies and heat transfer behaviors during quenching of a heated rod using an acoustic measurement technique. The quenching experiments are performed by using cylindrical test samples that are embedded with thermocouples. The experimental work includes investigating the whole range of pool boiling regimes from film boiling through transition boiling to nucleate boiling using Python’s tools of signal processing. The boiling signals are recorded by a special hydrophone (i.e., the HTI-96-Min Exportable, High Tech, Inc.) to register the different sound waves generated by boiling under the water. This special hydrophone is capable of working in boiling water to record high- and low-frequency signals in subcooled pool boiling. The latter has many applications, such as the operations of advanced nuclear reactors, chemical processing, power generation, etc. In this work, the technique of signal processing is employed to identify the boiling regimes and to seek a new understanding of the boiling dynamics, particularly vapor-liquid interfacial morphologies, by applying a new tool for signal processing. Physically, each boiling regime should have a characteristic dominant acoustic signal that can be identified. By correlating the acoustic signatures with the boiling heat fluxes in various regimes, the minimum and maximum heat fluxes measured during the quenching of the cylindrical samples can be identified from the recorded acoustic signals during subcooled pool boiling.