ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Mustafa H. Almadih, T. Almudhhi, S. Ebrahim, A. Howell, G. R. Garrett, S. M. Bajorek, F. B. Cheung
Nuclear Technology | Volume 208 | Number 8 | August 2022 | Pages 1290-1300
Technical Paper | doi.org/10.1080/00295450.2021.2000558
Articles are hosted by Taylor and Francis Online.
In this study, boiling regimes have been identified and analyzed along with the corresponding vapor-liquid interfacial morphologies and heat transfer behaviors during quenching of a heated rod using an acoustic measurement technique. The quenching experiments are performed by using cylindrical test samples that are embedded with thermocouples. The experimental work includes investigating the whole range of pool boiling regimes from film boiling through transition boiling to nucleate boiling using Python’s tools of signal processing. The boiling signals are recorded by a special hydrophone (i.e., the HTI-96-Min Exportable, High Tech, Inc.) to register the different sound waves generated by boiling under the water. This special hydrophone is capable of working in boiling water to record high- and low-frequency signals in subcooled pool boiling. The latter has many applications, such as the operations of advanced nuclear reactors, chemical processing, power generation, etc. In this work, the technique of signal processing is employed to identify the boiling regimes and to seek a new understanding of the boiling dynamics, particularly vapor-liquid interfacial morphologies, by applying a new tool for signal processing. Physically, each boiling regime should have a characteristic dominant acoustic signal that can be identified. By correlating the acoustic signatures with the boiling heat fluxes in various regimes, the minimum and maximum heat fluxes measured during the quenching of the cylindrical samples can be identified from the recorded acoustic signals during subcooled pool boiling.