ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
K. W. Wong, L. Bures, K. Mikityuk
Nuclear Technology | Volume 208 | Number 8 | August 2022 | Pages 1266-1278
Technical Paper | doi.org/10.1080/00295450.2021.1971025
Articles are hosted by Taylor and Francis Online.
Helium gases are utilized to remove fission products from the molten salt fast reactor (MSFR) core during operation. Helium gases and other volatile fission products may be introduced into the intermediate heat exchanger channels. The effect of these gases on heat transfer is essential for the MSFR to operate properly, especially in laminar flow regimes. The computational fluid dynamics code PSI-BOIL was selected to examine this problem because of its interface tracking capability. A periodic square duct simulation created the flow regime, resulting in a sliding bubble regime. Following that, we examined the impact of heat transfer using an extended nonperiodic channel simulation with a succession of corner bubble arrays. Due to the combined effects of low thermal diffusivity and laminar flow characteristics, it is shown that the length of heat transfer augmentation may extend to at least five bubble diameters downstream of the bubble placement. Finally, we examined the impact of interphasic heat transfer between an inert gas and a liquid. The bulk of the heat transfer amplification effect was due to the motion of the bubbles rather than interphasic heat transfer.