ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
A trip abroad
Hash Hashemian president@ans.org
In my August column in Nuclear News, I reflected on the importance of ANS’s annual conferences for bringing together our nuclear community at the national level. In September, after speaking at Tennessee’s Nuclear Opportunities Workshop, I focused my NN column that month on the value of state-level conferences.
Also in September, alongside ANS Executive Director/CEO Craig Piercy, I shifted my focus to another key front in nuclear collaboration, the international stage, by attending the General Conference of the International Atomic Energy Agency in Vienna.
The timing of the IAEA’s General Conference could not have been better; it took place the same week the U.S. and U.K. kicked off a new wave of transatlantic partnerships in the nuclear sector between both government and industry. This fortuitous overlapping gave us a timely and concrete reminder of international collaboration’s unparalleled benefits.
The General Conference was an expectedly busy event. To cover as much ground as possible, Piercy and I took turns attending either the U.S. delegation meetings with other countries or the General Assembly of the IAEA, where the American Nuclear Society has a seat among other critical nongovernmental organizations.
We listened to presentations by several of the 180 IAEA member states, including, of course, the United States. Aside from ANS, the U.S. presence at the conference included U.S. Secretary of Energy Chris Wright, NRC Chair David Wright, and DOE Assistant Secretary of Nuclear Energy Ted Garrish.
U.S. representation was further bolstered by an industry delegation that included 65 participants from 32 companies, many of whom used the opportunity to report progress on their plans for the international expansion of their nuclear fleets. Meetings of that industry delegation were coordinated by the Nuclear Energy Institute.
Aside from the main conference, Piercy and I also attended the embedded meetings of the International Nuclear Society Council. INSC exists to facilitate knowledge-sharing and collaboration between 18 different member nuclear societies from around the world.
The INSC meetings within the General Conference brought together the presidents and senior members of those societies to give presentations and explore new opportunities. I made a presentation on the state of nuclear in North America, covering the latest developments and deployments in the U.S. and Canada.
This presentation emphasized the new nuclear lift in the U.S. that is being heavily supported by the Trump administration. I recapped the four executive orders issued by President Trump in May, the recent momentum at the DOE, and how these changes are capitalizing on a broader groundswell in both industry development and public support.
I also pointed out the success of our neighbor Canada in progressing on the first water-cooled small modular reactor in North America using BWRX-300 technology, which was supplied by an American firm and international partners—a perfect symbol of the value of global nuclear collaboration.
In all, I have now represented ANS at the state, national, and international levels, gaining useful insight into the work that needs to be done at each. From this vantage point, it’s clear to me that the path forward from the country to the globe is to, above all else, keep working together and supporting each other to bring about the next age of nuclear.
Nadish Saini, Igor A. Bolotnov
Nuclear Technology | Volume 208 | Number 8 | August 2022 | Pages 1244-1265
Technical Paper | doi.org/10.1080/00295450.2021.1974279
Articles are hosted by Taylor and Francis Online.
Spacer grids and mixing vanes exhibit a significant role in the thermal hydraulics of pressurized water reactors (PWRs), especially in the post loss-of-coolant accident regimes. A detailed analysis of the contrasting upstream and downstream turbulent flow features is of great importance to both system codes and computational fluid dynamics (CFD)–Reynolds-averaged Navier–Stokes (RANS) modeling. Further, with the advent of supercomputing resources and machine learning research, a data-driven approach to turbulence modeling is gaining popularity. However, owing to the complexities associated with large-scale, high-fidelity data collection capabilities, the application of machine learning–based turbulence models has been limited to simple geometries. In this work, using a highly scalable CFD code PHASTA, we have collected data from direct numerical simulations of a PWR subchannel with high spatial and temporal resolution. From the collected data we extract key turbulent flow features, including mean velocities and Reynolds stresses that highlight the effects of spacer grids and mixing vanes on downstream turbulence in a typical PWR subchannel. An invariant analysis of the anisotropic stress tensor is also presented, which further elucidates their effect on the nature of turbulence in the immediate upstream and downstream vicinity. The high-resolution data from the simulations are archived and intended for the development of data-driven RANS closure models that are capable of capturing the evolution of anisotropy in PWR subchannels.