ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Jun Fang, Yiqi Yu, Haomin Yuan, Elia Merzari, Dillon R. Shaver
Nuclear Technology | Volume 208 | Number 8 | August 2022 | Pages 1233-1243
Technical Paper | doi.org/10.1080/00295450.2021.1957373
Articles are hosted by Taylor and Francis Online.
To support the design efforts of advanced sodium-cooled fast reactors (SFRs), a series of computational fluid dynamics (CFD) simulations are performed to investigate the pressure change along various flow passages in the proposed SFR system. The simulations are carried out with the state-of-the-art spectral element flow solver, Nek5000. Two specific case studies are presented in this paper: the flow exiting the axial neutron reflector channels and the flow entering the fuel pin bundle. Due to the high Reynolds numbers expected, a Reynolds-averaged Navier-Stokes (RANS) approach is necessary to model the turbulence. A newly developed regularized RANS model is adopted in the related CFD calculations. The first case study explores the effect of Reynolds number on the pressure change when flow exits the reflector channels. The pressure change in this case has two major contributors: the change due to wall friction and the Bernoulli effect. It is noted that the nondimensional pressure loss follows a log-linear trend up to Re = 105, and then the trend is flattened. In the second case study, the advanced NekNek coupling capability is tested where an integral domain can be divided into multiple subdomains with coupling interfaces, which would greatly ease the meshing process of complex engineering geometries and potentially save computational resources. The preliminary results obtained so far confirm the consistency between the NekNek results and those produced by regular Nek5000 simulation. The presented work demonstrates the readiness and flexibility of the related CFD techniques, which is part of the broader effort to leverage cutting-edge CFD to inform the advanced nuclear reactor designs.