ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
Jichong Lei, Zhenping Chen, Jiandong Zhou, Chao Yang, Changan Ren, Wei Li, Chao Xie, Zining Ni, Gan Huang, Leiming Li, Jinsen Xie, Tao Yu
Nuclear Technology | Volume 208 | Number 7 | July 2022 | Pages 1223-1232
Technical Note | doi.org/10.1080/00295450.2021.2018270
Articles are hosted by Taylor and Francis Online.
The reactor core design involves the search for and detailed calculation of a large number of schemes. Four different machine learning algorithms were used in this technical note: the C4.5 algorithm (an algorithm of decision trees), Support Vector Machine, Random Forest, and Multi-layer Perceptron, respectively. Uranium enrichment, the number of fuel rods containing burnable poison, and the concentration of burnable poison were taken as independent variables in the calculation. The k-eff unevenness coefficient, the radial power nonuniformity coefficient, the radial flux nonuniformity coefficient, and the core life were taken as the number of core parameters fulfilled (CPF). Machine learning models were constructed through learning the training data set, which consisted of a large number of assembly and core schemes whose nuclear design parameters were already known. Using the models, the CPF values for the unknown core data set (the test data set) were quickly predicted. The results show that the cross-validation accuracy of each algorithm was above 94% and that the C4.5 algorithm had the highest accuracy for the overall prediction of the CPF values. For the CPF value prediction of the test data set, the time for the training data set was within 10s, while the Random Forest algorithm has the highest prediction accuracy for CPF = 4 or CPF ≠ 4.