ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
Gang Li, Ghaouti Bentoumi, Liqian Li
Nuclear Technology | Volume 208 | Number 7 | July 2022 | Pages 1214-1222
Technical Paper | doi.org/10.1080/00295450.2021.2011672
Articles are hosted by Taylor and Francis Online.
Organic liquid scintillators, such as EJ-309, are capable of detecting fast neutrons and discriminating gamma rays through pulse shape. Higher detection efficiency is a common objective for detector designs and research. This paper describes two methods to enhance fast neutron detection by increasing neutron collection and reducing gamma-ray interference. Neutron collection can be increased by using strong scattering material to reflect neutrons toward scintillators. Gamma-ray interference can be reduced by using heavy material to shield gamma rays; such a material could have a minimal impact on neutron detection because neutrons and gamma rays have different interaction cross sections. In this work, both effects were investigated, experimentally and by simulation. Using a graphite reflector with simple geometry, the fast neutron detection was measured to have an increase of 9%, and simulations predicted an approximately 50% increase for optimized geometry. Using a lead shielding of 8-mm thickness, the neutron detection with a Pu source was measured to have a factor of 2 increase. These methods could be useful when cost-effective and highly efficient fast neutron detection is desired.