ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
Gang Li, Ghaouti Bentoumi, Liqian Li
Nuclear Technology | Volume 208 | Number 7 | July 2022 | Pages 1214-1222
Technical Paper | doi.org/10.1080/00295450.2021.2011672
Articles are hosted by Taylor and Francis Online.
Organic liquid scintillators, such as EJ-309, are capable of detecting fast neutrons and discriminating gamma rays through pulse shape. Higher detection efficiency is a common objective for detector designs and research. This paper describes two methods to enhance fast neutron detection by increasing neutron collection and reducing gamma-ray interference. Neutron collection can be increased by using strong scattering material to reflect neutrons toward scintillators. Gamma-ray interference can be reduced by using heavy material to shield gamma rays; such a material could have a minimal impact on neutron detection because neutrons and gamma rays have different interaction cross sections. In this work, both effects were investigated, experimentally and by simulation. Using a graphite reflector with simple geometry, the fast neutron detection was measured to have an increase of 9%, and simulations predicted an approximately 50% increase for optimized geometry. Using a lead shielding of 8-mm thickness, the neutron detection with a Pu source was measured to have a factor of 2 increase. These methods could be useful when cost-effective and highly efficient fast neutron detection is desired.