ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
Shinsuke Tashiro, Gunzo Uchiyama, Takuya Ohno, Yuki Amano, Ryoichiro Yoshida, Hithoshi Abe
Nuclear Technology | Volume 208 | Number 7 | July 2022 | Pages 1205-1213
Technical Paper | doi.org/10.1080/00295450.2021.2018272
Articles are hosted by Taylor and Francis Online.
A clogging behavior of a high-efficiency particulate air (HEPA) filter has been investigated for solvent fire accidents to provide valuable data for establishing a risk assessment method for reprocessing facilities in Japan. In this study, the burning rates of 30% tri-butyl phosphate (TBP)/dodecane and dodecane solvents and the differential pressure ΔP change of a high airflow–type HEPA filter applied in ventilation systems of reprocessing facilities in Japan were measured in the solvent burning. It was confirmed that the dodecane in the 30% TBP/dodecane mixed solvent burned mainly at the early stage of the burning of the mixed solvent and that the TBP burned mainly at the late stage of the burning of the mixed solvent. In addition, the burning rate of dodecane in the early stage and the rate of the TBP in the late stage were estimated, respectively. As a result, the former rate was almost the same as the burning rate of burning only the dodecane without TBP. Furthermore, the rapid increase of the ΔP of the HEPA filter was observed at the late stage of burning the mixed solvent. The increase of the release ratio of the airborne particles of unburned solvent (i.e., TBP and/or degradation products of TBP) and inorganic phosphorus (i.e., P2O5) was considered to contribute to the rapid increase. The empirical formulas for representing the relationship between the mass of the loading airborne particles onto the HEPA filter and the ΔP of the HEPA filter, except for the region of the rapid increase of the ΔP, under the mixed-solvent burning could be induced.