ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
November 2024
Nuclear Technology
Fusion Science and Technology
Latest News
Keeping up with Kewaunee
In October 2012, Dominion Energy announced it was closing the Kewaunee nuclear power plant, a two-loop 574-MWe pressurized water reactor located about 27 miles southeast of Green Bay, Wis., on the western shore of Lake Michigan. At the time, Dominion said the plant was running well, but that low wholesale electricity prices in the region made it uneconomical to continue operation of the single-unit merchant power plant.
Jonghwan Kim, Byunyoung Jung, Junhong Park, Youngchul Choi
Nuclear Technology | Volume 208 | Number 7 | July 2022 | Pages 1184-1191
Technical Paper | doi.org/10.1080/00295450.2021.2018271
Articles are hosted by Taylor and Francis Online.
A pipe wall thinning diagnosis method based on vibration characteristics is proposed. Elbow specimens with artificial pipe wall thinning were fabricated and combined in a loop. By running a pump in the loop, vibration was induced by flow, and the vibrational signals were measured with accelerometers. The effect of pipe wall thinning on the vibrational signals was investigated by analyzing the spectral data of the acceleration signals. The analyzed vibration characteristics were difficult to observe because the change in characteristics was small. A convolutional neural network (CNN) specialized for data recognition was applied to recognize the small change in vibrational signal resulting from the pipe wall thinning. A regression model based on CNN was chosen to learn the tendency of change in the vibrational signals with varying thinning. The data types advantageous for training the regression model were identified. An early stopping technique using the validation data set was adopted to regularize the regression model. The trained regression model was able to predict pipe thinning.