ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Jonghwan Kim, Byunyoung Jung, Junhong Park, Youngchul Choi
Nuclear Technology | Volume 208 | Number 7 | July 2022 | Pages 1184-1191
Technical Paper | doi.org/10.1080/00295450.2021.2018271
Articles are hosted by Taylor and Francis Online.
A pipe wall thinning diagnosis method based on vibration characteristics is proposed. Elbow specimens with artificial pipe wall thinning were fabricated and combined in a loop. By running a pump in the loop, vibration was induced by flow, and the vibrational signals were measured with accelerometers. The effect of pipe wall thinning on the vibrational signals was investigated by analyzing the spectral data of the acceleration signals. The analyzed vibration characteristics were difficult to observe because the change in characteristics was small. A convolutional neural network (CNN) specialized for data recognition was applied to recognize the small change in vibrational signal resulting from the pipe wall thinning. A regression model based on CNN was chosen to learn the tendency of change in the vibrational signals with varying thinning. The data types advantageous for training the regression model were identified. An early stopping technique using the validation data set was adopted to regularize the regression model. The trained regression model was able to predict pipe thinning.