ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
November 2024
Nuclear Technology
Fusion Science and Technology
Latest News
The DOE picks six HALEU deconverters. What have we learned?
The Department of Energy announced contracts yesterday for six companies to perform high-assay low-enriched uranium (HALEU) deconversion and to transform enriched uranium hexafluoride (UF6) to other chemical forms, including metal or oxide, for storage before it is fabricated into fuel for advanced reactors. It amounts to a first round of contracting. “These contracts will allow selected companies to bid on work for deconversion services,” according to the DOE’s announcement, “creating strong competition and allowing DOE to select the best fit for future work.”
Wen-Yu Wang, Yung-Shin Tseng, Chih-Hung Lin, Tsung-Kuang Yeh
Nuclear Technology | Volume 208 | Number 7 | July 2022 | Pages 1165-1183
Technical Paper | doi.org/10.1080/00295450.2021.2011576
Articles are hosted by Taylor and Francis Online.
One of the important criteria of the emergency planning (EP) exemption for nuclear power plant (NPP) decommissioning is a minimum of 10 h available before any spent nuclear fuel (SNF) cladding temperature reaches 900°C after a complete loss of the spent fuel pool (SFP) water inventory with no heat loss (adiabatic). This study used the computational fluid dynamics (CFD) code to analyze the cladding heatup time of the SFP for a boiling water reactor. First, the developed CFD local model of the SFP was compared with the U.S. Nuclear Regulatory Commission’s (NRC’s) report on SFP heatup calculations, NSIR-2015-001. The CFD results were similar to the theoretical calculations and MELCOR results for cases with and without racks. The results also indicated that racks can significantly delay the heatup time. This study also performed sensitivity studies to identify the effects of fuel burnup, hottest assembly, and fuel loading configurations. After validation of the CFD local model against MELCOR, a whole-pool CFD model of the Chinshan SFP was developed and successfully applied to analysis for the EP exemption of the Chinshan NPP. The results predicted using the whole-pool CFD model of the Chinshan SFP agreed well with the MELCOR results. Additionally, the required 900°C heatup times were calculated based on the actual decay heat of each cycle and fuel loading at the Chinshan SFP. The required 900°C heatup times were 19.1, 54, and 64.6 h for the Chinshan SFP at 1, 5, and 10 years after shutdown, respectively. The actual fuel loading and decay heat of the Chinshan SFP met the requirements for the EP exemption after 1 year of shutdown. The main purpose of this study is to demonstrate that the CFD code can be used as a tool to calculate SFP fuel assembly heatup times for the EP exemption. The advantage of using the CFD code instead of MELCOR is that the whole-pool SFP model can be developed based on the actual decay heat of each cycle and fuel loading and to determine more realistic fuel assembly heatup time for the EP exemption.