ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2023)
February 6–9, 2023
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2023
Jul 2022
Latest Journal Issues
Nuclear Science and Engineering
February 2023
Nuclear Technology
Fusion Science and Technology
January 2023
Latest News
Nuclear energy: enabling production of food, fiber, hydrocarbon biofuels, and negative carbon emissions
In the 1960s, Alvin Weinberg at Oak Ridge National Laboratory initiated a series of studies on nuclear agro-industrial complexes1 to address the needs of the world’s growing population. Agriculture was a central component of these studies, as it must be. Much of the emphasis was on desalination of seawater to provide fresh water for irrigation of crops. Remarkable advances have lowered the cost of desalination to make that option viable in countries like Israel. Later studies2 asked the question, are there sufficient minerals (potassium, phosphorous, copper, nickel, etc.) to enable a prosperous global society assuming sufficient nuclear energy? The answer was a qualified “yes,” with the caveat that mineral resources will limit some technological options. These studies were defined by the characteristic of looking across agricultural and industrial sectors to address multiple challenges using nuclear energy.
R. A. Pierce, L. C. Olson, H. M Ajo
Nuclear Technology | Volume 208 | Number 7 | July 2022 | Pages 1149-1164
Technical Paper | doi.org/10.1080/00295450.2021.2004871
Articles are hosted by Taylor and Francis Online.
The Savannah River National Laboratory has evaluated several options for the disposition of stainless steel (SS)–clad plutonium metal alloy. One of the technologies under consideration is alloying of the material with SS. The resulting SS-Pu alloy would be a nonproliferable waste form consisting of a secondary Pu composition region microencapsulated in the refractory SS. Two 8-kg ingots were made at SS-1.8Zr-0.4Pu alloys (in weight percent); 8 kg was determined in a previous study to be the maximum mass of SS ingot at the maximum target Pu loading of 350 g that would result in a SS-4.4Pu alloy (in weight percent). Two smaller 500-g ingots were also produced at SS-1.6Zr-1.4Pu and SS-1.4Pu (in weight percent). The alloying of 500-g ingots at a higher Pu concentration than in the 8-kg ingots was evaluated, and the necessity of adding Zr metal to incorporate the Pu and control Pu oxidation was evaluated. Zirconium addition was found to be unnecessary to incorporate the Pu and control Pu oxidation. Drill turnings were collected from the large and small ingots, and metallographic samples were directly cut from the small ingots. Both were analyzed to validate the structure and composition region formation. Chemical analyses of turnings proved that the Pu was dispersed within the SS ingots.