ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
R. A. Pierce, L. C. Olson, H. M Ajo
Nuclear Technology | Volume 208 | Number 7 | July 2022 | Pages 1149-1164
Technical Paper | doi.org/10.1080/00295450.2021.2004871
Articles are hosted by Taylor and Francis Online.
The Savannah River National Laboratory has evaluated several options for the disposition of stainless steel (SS)–clad plutonium metal alloy. One of the technologies under consideration is alloying of the material with SS. The resulting SS-Pu alloy would be a nonproliferable waste form consisting of a secondary Pu composition region microencapsulated in the refractory SS. Two 8-kg ingots were made at SS-1.8Zr-0.4Pu alloys (in weight percent); 8 kg was determined in a previous study to be the maximum mass of SS ingot at the maximum target Pu loading of 350 g that would result in a SS-4.4Pu alloy (in weight percent). Two smaller 500-g ingots were also produced at SS-1.6Zr-1.4Pu and SS-1.4Pu (in weight percent). The alloying of 500-g ingots at a higher Pu concentration than in the 8-kg ingots was evaluated, and the necessity of adding Zr metal to incorporate the Pu and control Pu oxidation was evaluated. Zirconium addition was found to be unnecessary to incorporate the Pu and control Pu oxidation. Drill turnings were collected from the large and small ingots, and metallographic samples were directly cut from the small ingots. Both were analyzed to validate the structure and composition region formation. Chemical analyses of turnings proved that the Pu was dispersed within the SS ingots.