ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Alexander Jesser, Kai Krycki, Martin Frank
Nuclear Technology | Volume 208 | Number 7 | July 2022 | Pages 1114-1123
Technical Paper | doi.org/10.1080/00295450.2021.2016018
Articles are hosted by Taylor and Francis Online.
The measurement facility QUANTOM is being developed for the material analysis of radioactive waste packed up in 200-L drums. QUANTOM enables a spatially resolved elemental analysis based on prompt gamma neutron activation analysis. The evaluation of the spatially resolved gamma spectra relies on the calculation of partial cross sections. Hereby, the neutron flux spectrum enters as a parameter, which needs to be simulated in the full three-dimensional geometry of the measurement facility. To ensure that the simulations can be carried out within an acceptable time frame, we use a deterministic neutron transport code specially developed for this purpose based on the SPN approximation of the linear Boltzmann equation. The following question arises: Does the approximation in the neutron transport model still allow a calculation of the partial cross sections at a sufficient level of accuracy. Therefore, in this paper, we study the calculation of partial cross sections in light of the approximation in the neutron transport model in the geometrical setting of the measurement facility. In a simulation study we consider four typical matrix materials and compare cross sections for all elements of the periodic table to reference results obtained by Monte Carlo simulations.