ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Alexander Jesser, Kai Krycki, Martin Frank
Nuclear Technology | Volume 208 | Number 7 | July 2022 | Pages 1114-1123
Technical Paper | doi.org/10.1080/00295450.2021.2016018
Articles are hosted by Taylor and Francis Online.
The measurement facility QUANTOM is being developed for the material analysis of radioactive waste packed up in 200-L drums. QUANTOM enables a spatially resolved elemental analysis based on prompt gamma neutron activation analysis. The evaluation of the spatially resolved gamma spectra relies on the calculation of partial cross sections. Hereby, the neutron flux spectrum enters as a parameter, which needs to be simulated in the full three-dimensional geometry of the measurement facility. To ensure that the simulations can be carried out within an acceptable time frame, we use a deterministic neutron transport code specially developed for this purpose based on the SPN approximation of the linear Boltzmann equation. The following question arises: Does the approximation in the neutron transport model still allow a calculation of the partial cross sections at a sufficient level of accuracy. Therefore, in this paper, we study the calculation of partial cross sections in light of the approximation in the neutron transport model in the geometrical setting of the measurement facility. In a simulation study we consider four typical matrix materials and compare cross sections for all elements of the periodic table to reference results obtained by Monte Carlo simulations.