ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
Chaoliang Xu, Xiangbing Liu, Yuanfei Li, Wangjie Qian, Wenqing Jia, Qiwei Quan, Jian Yin
Nuclear Technology | Volume 208 | Number 6 | June 2022 | Pages 1083-1088
Technical Note | doi.org/10.1080/00295450.2021.1997058
Articles are hosted by Taylor and Francis Online.
Nitrogen ion implantation can be used to improve the surface mechanical properties of austenitic stainless steel. In this study, austenitic stainless steel was irradiated with 1.1 MeV N ions at room temperature up to 15 displacements per atom. Then the microstructural and mechanical properties were studied by grazing incidence X-ray diffraction and nano-indenter. A finer synchrotron radiation diffraction pattern is obtained compared with traditional X-ray diffraction, indicating an expanded austenite phase γN and CrN phase after being irradiated to several damage levels. An irradiation-induced martensite phase appears first and then disappears with increased damage. The enrichment of the nitrogen supply in austenitic stainless steel can explain this phenomenon. The hardness data show an irradiation hardening phenomenon. Two different inflexion points hc1 and hc2 in H2 versus 1/h curves are observed, and the real hardness of the irradiation damaged layer can be obtained from the H2 versus 1/h curve between hc1 and hc2.