ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2023)
February 6–9, 2023
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2023
Jul 2022
Latest Journal Issues
Nuclear Science and Engineering
February 2023
Nuclear Technology
Fusion Science and Technology
Latest News
University of Florida-led consortium to research nuclear forensics
A 16-university team of 31 scientists and engineers, under the title Consortium for Nuclear Forensics and led by the University of Florida, has been selected by the Department of Energy’s National Nuclear Security Administration (NNSA) to develop the next generation of new technologies and insights in nuclear forensics.
J. M. Soler, I. Neretnieks, L. Moreno, L. Liu, S. Meng, U. Svensson, A. Iraola, H. Ebrahimi, P. Trinchero, J. Molinero, P. Vidstrand, G. Deissmann, J. Říha, M. Hokr, A. Vetešník, D. Vopálka, L. Gvoždík, M. Polák, D. Trpkošová, V. Havlová, D.-K. Park, S.-H. Ji, Y. Tachi, T. Ito, B. Gylling, G. W. Lanyon
Nuclear Technology | Volume 208 | Number 6 | June 2022 | Pages 1059-1073
Technical Paper | doi.org/10.1080/00295450.2021.1988822
Articles are hosted by Taylor and Francis Online.
The SKB GroundWater Flow and Transport of Solutes Task Force is an international forum in the area of conceptual and numerical modeling of groundwater flow and solute transport in fractured rocks relevant for the deep geological disposal of radioactive waste. Two in situ matrix diffusion experiments in crystalline rock (gneiss) were performed at POSIVA’s ONKALO underground facility in Finland. Synthetic groundwater containing several conservative and sorbing radiotracers was injected at one end of a borehole interval and flowed along a thin annulus toward the opposite end. Several teams performed predictive modeling of the tracer breakthrough curves using “conventional” modeling approaches (constant diffusion and sorption in the rock, no or minimum rock heterogeneity). Supporting information, derived from small-scale laboratory experiments, was provided. The teams were free to implement different concepts, use different codes, and apply the transport and retention parameters that they considered to be most suited (i.e., not a benchmark exercise). The main goal was the comparison of the different sets of results and the analysis of the possible differences for this relatively simple experimental setup with a well-defined geometry. Even though the experiment was designed to study matrix diffusion, the calculated peaks of the breakthrough curves were very sensitive to the assumed magnitude of dispersion in the borehole annulus. However, given the very different timescales for advection and matrix diffusion, the tails of the curves provided information concerning diffusion and retention in the rock matrix regardless of the magnitude of dispersion. In addition, although the task was designed to be a blind modeling exercise, the model results have also been compared to the measured experimental breakthroughs. Experimental results tend to show relatively small activities, wide breakthroughs, and early first arrivals, which are somewhat similar to model results using large dispersivity values.