ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
L. C. Olson, R. A. Pierce, H. M Ajo
Nuclear Technology | Volume 208 | Number 6 | June 2022 | Pages 1049-1058
Technical Paper | doi.org/10.1080/00295450.2021.1988821
Articles are hosted by Taylor and Francis Online.
The Savannah River National Laboratory evaluated several options for disposition of stainless steel (SS)–clad plutonium metal, particularly Pu-10.6 at. % Al (Pu- 1.3 wt% Al) alloy fuel. One technology considered was alloying fuel with SS. The goal of the alloying would be to make a SS-Pu alloy that was a nonproliferable waste form with secondary Pu-rich microencapsulated regions distributed throughout the refractory SS. The microencapsulation of the Pu regions should therefore allow the waste form to meet the requirements for a low attractiveness waste as defined by the U.S. Department of Energy. Plutonium-bearing alloys at these levels could potentially be suitable for disposal at a waste isolation pilot plant. Four metal ingots were successfully fabricated using U and Al as a surrogate for Pu-Al. The U was distributed and microencapsulated by the alloy matrix, thereby setting the stage for subsequent tests using SS-clad fuel elements containing Pu-10.6Al.