ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
DNFSB’s Summers ends board tenure, extending agency’s loss of quorum
Lee
Summers
The Defense Nuclear Facilities Safety Board, the independent agency responsible for ensuring that Department of Energy facilities are protective of public health and safety, announced that the board’s acting chairman, Thomas Summers, has concluded his service with the agency, having completed his second term as a board member on October 18.
Summers’ departure leaves Patricia Lee, who joined the DNFSB after being confirmed by the Senate in July 2024, as the board’s only remaining member and acting chair. Lee’s DNFSB board term ends in October 2027.
L. C. Olson, R. A. Pierce, H. M Ajo
Nuclear Technology | Volume 208 | Number 6 | June 2022 | Pages 1049-1058
Technical Paper | doi.org/10.1080/00295450.2021.1988821
Articles are hosted by Taylor and Francis Online.
The Savannah River National Laboratory evaluated several options for disposition of stainless steel (SS)–clad plutonium metal, particularly Pu-10.6 at. % Al (Pu- 1.3 wt% Al) alloy fuel. One technology considered was alloying fuel with SS. The goal of the alloying would be to make a SS-Pu alloy that was a nonproliferable waste form with secondary Pu-rich microencapsulated regions distributed throughout the refractory SS. The microencapsulation of the Pu regions should therefore allow the waste form to meet the requirements for a low attractiveness waste as defined by the U.S. Department of Energy. Plutonium-bearing alloys at these levels could potentially be suitable for disposal at a waste isolation pilot plant. Four metal ingots were successfully fabricated using U and Al as a surrogate for Pu-Al. The U was distributed and microencapsulated by the alloy matrix, thereby setting the stage for subsequent tests using SS-clad fuel elements containing Pu-10.6Al.