ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
B. A. Gusev, А. А. Efimov, L. N. Moskvin
Nuclear Technology | Volume 208 | Number 6 | June 2022 | Pages 1027-1048
Technical Paper | doi.org/10.1080/00295450.2021.1997056
Articles are hosted by Taylor and Francis Online.
Improvement of the corrosion situation during nuclear power plant (NPP) operation is associated with the enhancement of construction steel resistance against general (uniform) corrosion, with the routes of chemical transformations and corrosion product mass transfer in the coolant under different water chemistry conditions. Based on a look-back analysis of the obtained research results and a comparison of these results with those in available publications, the following conclusions were made:
1. The morphology of corrosion products formed on the inside surfaces of NPP systems has a four-layer structure.
a. A layer of solid corrosion deposits tightly bonded with the surface is formed above the oxide film.
b. Tightly bonded deposits are under loosely bonded (“loose” or dissipative) corrosive deposit layers that are dynamically balanced with the corrosion product particles dispersed in the water coolant.
2. By an aggregate state, the coarse/medium fractions (particle size more than 0.45 µm) and the fine fractions (particle size less than 0.45 µm) are conventionally referred to as nonsoluble and conditionally soluble corrosion products, respectively.
3. The chemical composition of all corrosion products depends on the presence of iron compounds, including the alloy element impurities (Cr, Ni, Mn, and Ti).
4. The radionuclide composition of all corrosion products is qualitatively the same and is presented by the activation products of reactor materials, such as 51Cr, 59Fe, 54Mn, 58Co, and 60Co.
5. The phase composition of solid corrosion products depends on the presence of ferrous (II) and ferric (III) iron oxide-hydroxide compounds whose ratio depends on water chemistry conditions:
a. Under reducing water chemistry conditions, the phase composition of all corrosion products is determined by a spinel structure of magnetite (Fe3O4).
b. Under oxidizing water chemistry conditions, the partial oxidation of ferrous (II) iron ions results in the formation of a defect structure of nonstoichiometric magnetite FeА3+ [Fe2+1-хFe3+]BO4-х, where А and B are two nonequivalent positions in the magnetite structure. At х = 1, a nonstoichiometric magnetite structure changes into hematite, a α-Fe2O3 or maghemite γ-Fe2O3 structure.
It is noted that the mathematical models nowadays used for describing the mass exchange and mass transfer of corrosion products in NPP primary systems do not consider physicochemical processes leading to the formation of such complex (phase, disperse, chemical, radionuclide) compositions of corrosion products. A widely known electrochemical mechanism that considers corrosion as a coupled anodic-cathodic process fails to explain actually observed steel dissolution and the contribution of soluble iron forms to oxide film formation on the corroding steel surface at potentials of cathodic polarization and anodic dissolution.
This paper presents a diffusion model for corrosion product mass exchange and mass transfer in the steel-water coolant system as an alternative to the electrochemical model for general corrosion. This model is based on Frank-Kamenetkiy’s [Diffusion and Heat Transfer in Chemical Kinetics, Nauka (1987)] concept of the macroscopic kinetics of heterogeneous processes with simultaneous chemical transformations of the corrosion product ionic forms and the formation of solid-phase products in the water coolant and on the surface of corrosive steel. The diffusion model provided better insight into understanding how the phase, disperse, chemical, and radionuclide compositions of steel corrosion products are formed in the coolant of the NPP primary system.