ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2024
Jan 2024
Latest Journal Issues
Nuclear Science and Engineering
October 2024
Nuclear Technology
Fusion Science and Technology
Latest News
Don’t get boxed in: Entergy CNO Kimberly Cook-Nelson shares her journey
Kimberly Cook-Nelson
For Kimberly Cook-Nelson, the path to the nuclear industry started with a couple of refrigerator boxes and cellophane paper. Her sixth-grade science project was inspired by her father, who worked at Seabrook power station in New Hampshire as a nuclear operator.
“I had two big refrigerator boxes I taped together. I cut the ‘primary operating system’ and the ‘secondary system’ out of them. Then I used different colored cellophane paper to show the pressurized water system versus the steam versus the cold cooling water,” Cook-Nelson said. “My dad got me those little replica pellets that I could pass out to people as they were going by at my science fair.”
F. D’Auria, D. Bestion
Nuclear Technology | Volume 208 | Number 6 | June 2022 | Pages 990-1011
Technical Paper | doi.org/10.1080/00295450.2021.1997059
Articles are hosted by Taylor and Francis Online.
In the domain of reactor transient simulation, the identification of thermal-hydraulic phenomena (THPs) plays a major role. The system codes should model all influential THPs and should be validated against integral effect tests and separate effect tests which cover all influential THPs. The validation and the uncertainty quantification should cover every model related to an influential THP. A list of 116 THPs, recently established, covers all water-cooled reactors and design basis accident (DBA) analyses. It synthesizes more than 30 years of Organisation for Economic Co-operation and Development and International Atomic Energy Agency activities conducted by several safety specialists. A new tentative method to identify THPs was proposed based on two sources of information, the parameter evolutions in transients (depressurization, voiding, refill, heating, ...) and the set of balance equations with source and sink terms for convection, diffusion, interfacial transfers, and wall transfers. This method is just based on Gen-2 pressurized water reactor (PWR) transient analysis at the system, component, and basic process levels.
The comparison of the 116 THP list with the list of the tentative methods is made in this paper for the particular case of GEN-2 PWRs. No major contradiction was found. Both methods identified phenomena at the system, component, and process level. The 116 list better identified special components that require “special models” in system codes. The use of equations identified many more local process THPs, which may help ranking phenomena in a scaling analysis and identifying validation needs. The comparison confirms a potential synergy and complementarity between approach 1, which is based on the 116 THP list, and approach 2, which is based on the tentative method; the outcome of this comparison suggests further efforts to combine them and complement them in a new international collaborative context.
This analysis reports ongoing discussions between members of the Forum and Network of System Thermal Hydraulics Codes in Nuclear Reactor Thermal-Hydraulics network of system code developers.