ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
F. D’Auria, D. Bestion
Nuclear Technology | Volume 208 | Number 6 | June 2022 | Pages 990-1011
Technical Paper | doi.org/10.1080/00295450.2021.1997059
Articles are hosted by Taylor and Francis Online.
In the domain of reactor transient simulation, the identification of thermal-hydraulic phenomena (THPs) plays a major role. The system codes should model all influential THPs and should be validated against integral effect tests and separate effect tests which cover all influential THPs. The validation and the uncertainty quantification should cover every model related to an influential THP. A list of 116 THPs, recently established, covers all water-cooled reactors and design basis accident (DBA) analyses. It synthesizes more than 30 years of Organisation for Economic Co-operation and Development and International Atomic Energy Agency activities conducted by several safety specialists. A new tentative method to identify THPs was proposed based on two sources of information, the parameter evolutions in transients (depressurization, voiding, refill, heating, ...) and the set of balance equations with source and sink terms for convection, diffusion, interfacial transfers, and wall transfers. This method is just based on Gen-2 pressurized water reactor (PWR) transient analysis at the system, component, and basic process levels.
The comparison of the 116 THP list with the list of the tentative methods is made in this paper for the particular case of GEN-2 PWRs. No major contradiction was found. Both methods identified phenomena at the system, component, and process level. The 116 list better identified special components that require “special models” in system codes. The use of equations identified many more local process THPs, which may help ranking phenomena in a scaling analysis and identifying validation needs. The comparison confirms a potential synergy and complementarity between approach 1, which is based on the 116 THP list, and approach 2, which is based on the tentative method; the outcome of this comparison suggests further efforts to combine them and complement them in a new international collaborative context.
This analysis reports ongoing discussions between members of the Forum and Network of System Thermal Hydraulics Codes in Nuclear Reactor Thermal-Hydraulics network of system code developers.