ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
Tate Shorthill, Han Bao, Hongbin Zhang, Heng Ban
Nuclear Technology | Volume 208 | Number 5 | May 2022 | Pages 892-911
Technical Paper | doi.org/10.1080/00295450.2021.1957659
Articles are hosted by Taylor and Francis Online.
Digital instrumentation and control (I&C) upgrades are a vital research area for the nuclear industry. Despite their performance benefits, deployment of digital I&C in nuclear power plants (NPPs) has been limited. Digital I&C systems exhibit complex failure modes including common cause failures (CCFs), which can be difficult to identify. This paper describes the development of a redundancy-guided application of the Systems-Theoretic Process Analysis and fault tree analysis for the hazard analysis of digital I&C in advanced NPPs. The resulting Redundancy-Guided Systems-Theoretic Hazard Analysis (RESHA) is applied for the case study of a representative state-of-the-art digital reactor trip system. The analysis qualitatively and systematically identifies the most critical CCFs and other hazards of digital I&C systems. Ultimately, the RESHA can help researchers make informed decisions for how, and to what degree, defensive measures such as redundancy, diversity, and defense in depth can be used to mitigate or eliminate the potential hazards of digital I&C systems.