ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
November 2024
Nuclear Technology
Fusion Science and Technology
Latest News
The DOE picks six HALEU deconverters. What have we learned?
The Department of Energy announced contracts yesterday for six companies to perform high-assay low-enriched uranium (HALEU) deconversion and to transform enriched uranium hexafluoride (UF6) to other chemical forms, including metal or oxide, for storage before it is fabricated into fuel for advanced reactors. It amounts to a first round of contracting. “These contracts will allow selected companies to bid on work for deconversion services,” according to the DOE’s announcement, “creating strong competition and allowing DOE to select the best fit for future work.”
Eva E. Davidson, Andrew T. Godfrey, Katherine E. Royston, Tara M. Pandya, Shane C. Henderson, Thomas M. Evans
Nuclear Technology | Volume 208 | Number 5 | May 2022 | Pages 794-810
Technical Paper | doi.org/10.1080/00295450.2021.1957660
Articles are hosted by Taylor and Francis Online.
The Consortium for Advanced Simulation of Light Water Reactors (CASL) Virtual Environment for Reactor Applications (VERA) is a reactor simulation software. It offers unique capabilities by combining high-fidelity in-core radiation transport with temperature feedback by using MPACT (a deterministic neutron transport code) and COBRA-TF (a thermal-hydraulic code) with follow-on, fixed-source transport calculations using the Shift Monte Carlo code to calculate ex-core quantities of interest. In these coupled calculations, MPACT provides Shift with the fission source for follow-on ex-core calculations. These ex-core simulations can be set up to calculate detector responses, as well as the flux and fluence in ex-core regions of interest, such as the reactor pressure vessel, nozzle, and irradiated capsules. A Watts Bar Nuclear Plant Unit 1 (WBN1) ex-core model was developed, as described in this paper, and this model was used to perform coupon calculations. The results for the coupon flux calculations show close agreement with the reference values for cycle 1 produced by the two-dimensional Discrete Ordinates Transport (DORT) code and presented in a BWXT Services Inc. report. However, differences in the results (10%) seen in cycles 2 and 3 and the reasons for these differences are discussed in this paper. The VERA WBN1 model was also used to perform a vessel fluence calculation for cycle 1. Additionally, a collaboration between CASL and Duke Energy led to the first code-to-code validation of VERA for reactor ex-core applications that used a model for the Shearon Harris reactor. Results from this collaboration show excellent agreement between VERA and the Monte Carlo N-Particle Transport Code for the detector response calculations. The work performed under this collaboration is also detailed in this paper.