ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Son H. Kim, Temitope A. Taiwo, Brent W. Dixon
Nuclear Technology | Volume 208 | Number 5 | May 2022 | Pages 775-793
Technical Paper | doi.org/10.1080/00295450.2021.1951554
Articles are hosted by Taylor and Francis Online.
Nuclear power is currently the single largest carbon-free source of electricity in the United States. The climate mitigation cost savings of the existing U.S. nuclear fleet is denominated in hundreds of billions of dollars [net present value (NPV)] based on an integrated assessment modeling of the U.S. energy system within a globally consistent framework. Lifetime extensions of the existing nuclear fleet from 40 years to 60 and 100 years resulted in $330 billion to $500 billion (all figures are in U.S. dollars) (NPV) of mitigation cost savings for the United States under a deep decarbonization scenario consistent with limiting global temperature change to 2°C. The addition of new nuclear deployments in the United States increased the total U.S. mitigation cost savings of the 2°C climate goal by up to $750 billion (NPV). Immediate actions are required in the United States and globally to achieve net-zero carbon emissions by mid-century, and once achieving net-zero emissions, they must remain at net-zero indefinitely. Lifetime extensions of the existing nuclear fleet, in the United States and globally, support urgent near-term emissions reduction goals. Additionally, the longevity of nuclear power technologies reduces the need for new capacity additions of all carbon-free electricity sources and supports long-term actions necessary to maintain net-zero emissions.