ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Xiangpeng Meng, Yuanyuan Liu, Bin Wu, Jianping Cheng, Li Wang, Yu Wang, Ning Su
Nuclear Technology | Volume 208 | Number 4 | April 2022 | Pages 753-760
Technical Note | doi.org/10.1080/00295450.2021.1945358
Articles are hosted by Taylor and Francis Online.
Detecting the activity of 210Pb in the human skull by counting its 46.5-keV gamma rays in vivo is a promising method to reconstruct one’s cumulative radon intake, based on which associated lung cancer risk can be evaluated. However, this technique is strongly challenged by the background radiation level, which can be largely categorized as room background and subject background. In this work, we quantitatively assess the performance of the phoswich detector in suppressing background radiation resulting from 40K ubiquitously present in human subjects under in vivo measurements using Monte Carlo simulations. We first determined the region of interest for 210Pb gamma-ray detection to be 31 to 61 keV and focused on the background level inside this region caused by two 40K decay processes. It is found that the 1.46-MeV gamma-ray–led background can be reduced by 40% by the phoswich detector operating in anticoincidence mode whereas the 1.31-MeV beta-particle–led background is almost unaffected. This observation is understood through the dependence of the anticoincidence efficiency on the incident gamma-ray energies. Our results suggest that the 1.31-MeV beta-particle–led background is much larger and harder to suppress than the 1.46-MeV gamma-ray–led background, and they call for more investigations in the background reduction techniques for 210Pb in vivo measurement.