ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
November 2024
Nuclear Technology
Fusion Science and Technology
Latest News
NRC seeks presentations for virtual workshop on advanced reactor SNF
The Nuclear Regulatory Commission is asking for presentation proposals for a virtual workshop on the storage and transportation of TRISO and metal spent nuclear fuels for advanced reactor designs now under development.
P. C. Lai, R. J. Sheu
Nuclear Technology | Volume 208 | Number 4 | April 2022 | Pages 723-734
Technical Paper | doi.org/10.1080/00295450.2021.1938486
Articles are hosted by Taylor and Francis Online.
The characteristics of the radiation field around a consolidated interim spent nuclear fuel storage facility were investigated comprehensively through Monte Carlo simulations. Neutron and gamma-ray flux/dose contributions from multiple transport pathways, including direct, streaming, skyshine, groundshine, and multishine, were isolated using a modified version of the method that was originally developed by Oh et al. [J. Korean Phys. Soc., Vol. 69, 1057 (2016)] for the evaluation of neutron skyshine from a high-energy electron accelerator. The application of the methodology was demonstrated in this paper, and the flux/dose contributions of individual pathways were examined and compared. The results provided additional insight into how the radiation propagated from the source to off-site locations. The modified method for separating five transport pathways can provide valuable information for shielding optimization during the design phase and is generally applicable to Monte Carlo shielding analyses of other nuclear facilities.