ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
April 2025
Nuclear Technology
Fusion Science and Technology
Latest News
DOE releases $56.7M in second round of Palisades loan funding
Energy Secretary Chris Wright announced this week the release of the second part of Holtec’s loan disbursement for the Palisades nuclear plant restart plans in Michigan.
P. C. Lai, R. J. Sheu
Nuclear Technology | Volume 208 | Number 4 | April 2022 | Pages 723-734
Technical Paper | doi.org/10.1080/00295450.2021.1938486
Articles are hosted by Taylor and Francis Online.
The characteristics of the radiation field around a consolidated interim spent nuclear fuel storage facility were investigated comprehensively through Monte Carlo simulations. Neutron and gamma-ray flux/dose contributions from multiple transport pathways, including direct, streaming, skyshine, groundshine, and multishine, were isolated using a modified version of the method that was originally developed by Oh et al. [J. Korean Phys. Soc., Vol. 69, 1057 (2016)] for the evaluation of neutron skyshine from a high-energy electron accelerator. The application of the methodology was demonstrated in this paper, and the flux/dose contributions of individual pathways were examined and compared. The results provided additional insight into how the radiation propagated from the source to off-site locations. The modified method for separating five transport pathways can provide valuable information for shielding optimization during the design phase and is generally applicable to Monte Carlo shielding analyses of other nuclear facilities.