ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
November 2024
Nuclear Technology
Fusion Science and Technology
October 2024
Latest News
Westinghouse reorganization creates two new business units
Westinghouse Electric Company has announced that it will create two new global business units from its Operating Plant Services business. Effective January 1, 2025, the new units will be Long-Term Operations and Outage & Maintenance Services.
Kristin N. Stolte, Jeffrey A. Favorite, George E. McKenzie, Theresa E. Cutler, Jesson D. Hutchinson, Nicholas W. Thompson, Rene G. Sanchez
Nuclear Technology | Volume 208 | Number 4 | April 2022 | Pages 625-643
Technical Paper | doi.org/10.1080/00295450.2021.1945357
Articles are hosted by Taylor and Francis Online.
Kilowatt Reactor Using Stirling TechnologY (KRUSTY) was a prototype for the U.S. National Aeronautics and Space Administration’s Kilopower Program. KRUSTY has a highly enriched uranium–molybdenum alloy (with 7.65 wt% molybdenum) annular core reflected by beryllium oxide with an outer stainless steel shield. Five configurations from the experimental campaign were chosen to be evaluated as benchmark cases. Uncertainties were evaluated in five categories: (1) criticality measurement, (2) mass and density, (3) dimensions, (4) material compositions, and (5) positioning. The largest contribution to the overall uncertainty in each case was from the radial alignment of the movable platen. A simplified model was created to increase computational efficiency, and an average bias of –16 pcm was calculated due to the simplifications. Sample calculations were completed for each case using MCNP6.2, COG, and MC21, all with ENDF/B-VIII.0 nuclear data. For MCNP6.2, the average difference (absolute value) between the calculated and experimental keff for the five configurations was 14 pcm for both the detailed and the simplified models. The keff results from all three codes are within 1σ of the benchmark values. KRUSTY’s value as a benchmark is due to its sensitivity to beryllium and molybdenum. For beryllium, KRUSTY adds an 18th benchmark with a total cross-section sensitivity greater than 0.05%/%/(unit lethargy). For molybdenum, KRUSTY adds a 9th benchmark with a total cross-section sensitivity greater than 0.004%/%/(unit lethargy).