ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2023)
February 6–9, 2023
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2023
Jul 2022
Latest Journal Issues
Nuclear Science and Engineering
February 2023
Nuclear Technology
Fusion Science and Technology
Latest News
University of Florida-led consortium to research nuclear forensics
A 16-university team of 31 scientists and engineers, under the title Consortium for Nuclear Forensics and led by the University of Florida, has been selected by the Department of Energy’s National Nuclear Security Administration (NNSA) to develop the next generation of new technologies and insights in nuclear forensics.
Kristin N. Stolte, Jeffrey A. Favorite, George E. McKenzie, Theresa E. Cutler, Jesson D. Hutchinson, Nicholas W. Thompson, Rene G. Sanchez
Nuclear Technology | Volume 208 | Number 4 | April 2022 | Pages 625-643
Technical Paper | doi.org/10.1080/00295450.2021.1945357
Articles are hosted by Taylor and Francis Online.
Kilowatt Reactor Using Stirling TechnologY (KRUSTY) was a prototype for the U.S. National Aeronautics and Space Administration’s Kilopower Program. KRUSTY has a highly enriched uranium–molybdenum alloy (with 7.65 wt% molybdenum) annular core reflected by beryllium oxide with an outer stainless steel shield. Five configurations from the experimental campaign were chosen to be evaluated as benchmark cases. Uncertainties were evaluated in five categories: (1) criticality measurement, (2) mass and density, (3) dimensions, (4) material compositions, and (5) positioning. The largest contribution to the overall uncertainty in each case was from the radial alignment of the movable platen. A simplified model was created to increase computational efficiency, and an average bias of –16 pcm was calculated due to the simplifications. Sample calculations were completed for each case using MCNP6.2, COG, and MC21, all with ENDF/B-VIII.0 nuclear data. For MCNP6.2, the average difference (absolute value) between the calculated and experimental keff for the five configurations was 14 pcm for both the detailed and the simplified models. The keff results from all three codes are within 1σ of the benchmark values. KRUSTY’s value as a benchmark is due to its sensitivity to beryllium and molybdenum. For beryllium, KRUSTY adds an 18th benchmark with a total cross-section sensitivity greater than 0.05%/%/(unit lethargy). For molybdenum, KRUSTY adds a 9th benchmark with a total cross-section sensitivity greater than 0.004%/%/(unit lethargy).