ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
November 2024
Nuclear Technology
Fusion Science and Technology
Latest News
NRC seeks presentations for virtual workshop on advanced reactor SNF
The Nuclear Regulatory Commission is asking for presentation proposals for a virtual workshop on the storage and transportation of TRISO and metal spent nuclear fuels for advanced reactor designs now under development.
Philip J. Jensen, Sarah Suffield, Christopher L. Grant, Casey Spitz, Brady Hanson, Steven Ross, Sam Durbin, Charles Bryan, Sylvia Saltzstein
Nuclear Technology | Volume 208 | Number 3 | March 2022 | Pages 586-601
Technical Note | doi.org/10.1080/00295450.2021.1906086
Articles are hosted by Taylor and Francis Online.
This study presents a method that can be used to gain information relevant to determining the corrosion risk for spent nuclear fuel (SNF) canisters during extended dry storage. Currently, it is known that stainless steel canisters are susceptible to chloride-induced stress corrosion cracking (CISCC). However, the rate of CISCC degradation and the likelihood that it could lead to a through-wall crack is unknown. This study uses well-developed computational fluid dynamics and particle-tracking tools and applies them to SNF storage to determine the rate of deposition on canisters. The deposition rate is determined for a vertical canister system and a horizontal canister system, at various decay heat rates with a uniform particle size distribution, ranging from 0.25 to 25 µm, used as an input. In all cases, most of the dust entering the overpack passed through without depositing. Most of what was retained in the overpack was deposited on overpack surfaces (e.g., inlet and outlet vents); only a small fraction was deposited on the canister itself. These results are provided for generalized canister systems with a generalized input; as such, this technical note is intended to demonstrate the technique. This study is a part of an ongoing effort funded by the U.S. Department of Energy, Nuclear Energy Office of Spent Fuel Waste Science and Technology, which is tasked with doing research relevant to developing a sound technical basis for ensuring the safe extended storage and subsequent transport of SNF. This work is being presented to demonstrate a potentially useful technique for SNF canister vendors, utilities, regulators, and stakeholders to utilize and further develop for their own designs and site-specific studies.