ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
Lambert H. Fick, Elia Merzari, Yassin A. Hassan
Nuclear Technology | Volume 208 | Number 3 | March 2022 | Pages 539-561
Technical Paper | doi.org/10.1080/00295450.2021.1930456
Articles are hosted by Taylor and Francis Online.
We present results for a direct numerical simulation study of isothermal incompressible flow in a regularly packed pebble-bed domain with a bounding wall. We focus specifically on the near-wall behavior of the flow. Our simulation is carried out at a Reynolds number of 9308 to facilitate cross verification with available high-fidelity data. To reduce the required time to achieve statistically stationary results, we implemented an ensemble-averaging scheme that allowed for multiple simulation runs to be carried out concurrently. The close packing of the spheres in the domain causes significant acceleration effects in the domain, which result in boundary layer detachment and reattachment. Presented results include selected first- and second-order turbulence statistics, as well as selected terms of the turbulent kinetic energy transport equation. The acceleration effects in the near-wall region of the domain cause negative production of turbulent kinetic energy. The presented data may be useful for benchmarking Reynolds-averaged Navier-Stokes–based simulations of pebble beds.