ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
Fumihisa Nagase, Takashi Ohtomo, Hiroshi Uetsuka
Nuclear Technology | Volume 208 | Number 3 | March 2022 | Pages 484-493
Technical Paper | doi.org/10.1080/00295450.2021.1905472
Articles are hosted by Taylor and Francis Online.
A control rod alloy composed of silver (Ag), indium (In), and cadmium (Cd) was heated in argon or oxygen at 1073 to 1673 K for 60 to 3600 s. Then, the release behaviors of the elements were analyzed. The elemental release was quite limited below the liquefaction temperature. In argon, almost the entire Cd content was released within 3600 s at >1173 K and within 60 s at >1573 K while the released fractions of Ag and In were <3% and <8%, respectively. In oxygen, the release of Cd, which was quite small at temperatures lower than 1573 K, largely increased to ~30% to 50% at 1673 K for short periods. The releases of Ag and In were also small in oxygen under the analyzed conditions. The comparison with the experimental data suggests that conventional empirical release models may underestimate the Cd release at lower temperatures just after control rod failure in severe accidents.