ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
April 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Exploring nuclear science and promoting equity: A synergistic approach to education and outreach
The American Nuclear Society’s online programs continue to provide informative content for the wider nuclear community. Two recent webinars held at the end of January focused on intentional outreach activities and K-12 education: “Equitable Outreach: Now Comes the Hard Part” and “Quest for Gold: Exploring Nuclear Transmutation.”
William Chuirazzi, Aaron Craft, Burkhard Schillinger, Nicholas Boulton, Glen Papaioannou, Amanda Smolinski, Kyrone Riley, Andrew Smolinski, Michael Ruddell
Nuclear Technology | Volume 208 | Number 3 | March 2022 | Pages 455-467
Technical Paper | doi.org/10.1080/00295450.2021.1905471
Articles are hosted by Taylor and Francis Online.
Scintillator screens consisting of a dysprosium neutron converter and various scintillator materials were tested in the Heinz Maier-Leibnitz Zentrum Forschungsreaktor München II (FRM II) ANTARES cold neutron beam with the goal of finding a suitable screen for digital transfer method neutron radiography. This work explores the cold neutron response of 16 scintillator screens, 7 of which were previously tested with thermal neutrons. Light yield, signal-to-noise ratio (SNR), and spatial resolution were measured to compare the scintillator screens and determine which were best suited for digital transfer method neutron radiography. Screens with a zinc sulfide (ZnS:Cu) scintillator were most suitable for digital transfer method radiography based on light output, spatial resolution, SNR, and gamma-ray insensitivity. Spatial resolutions between 65 and 220 μm were measured. The top-performing screens were then used to demonstrate the feasibility of a new digital transfer method neutron radiography to image highly radioactive (8.84 Sv/h at ≈1 cm) nuclear fuel at Idaho National Laboratory’s Neutron Radiography reactor (NRAD). These results suggest that digital transfer method neutron radiography can be used to indirectly image highly radioactive objects and/or use neutron beams with a large gamma-ray content on a timescale of ~10 min/image (~144 images/day), much faster than the >10 h required using the current transfer method with film (limited to ~14 radiographs/day at NRAD).