ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
NRC v. Texas: Supreme Court weighs challenge to NRC authority in spent fuel storage case
The State of Texas has not one but two ongoing federal court challenges to the Nuclear Regulatory Commission that could, if successful, turn decades of NRC regulations, precedent, and case law on its head.
Sudipta Saha, Jamil Khan, Travis Knight, Tanvir Farouk
Nuclear Technology | Volume 208 | Number 3 | March 2022 | Pages 414-427
Technical Paper | doi.org/10.1080/00295450.2021.1936863
Articles are hosted by Taylor and Francis Online.
A global model is proposed to simulate the drying process of used nuclear fuel assemblies under vacuum drying conditions. The transient model consists of a coupled mass and energy conservation equation with appropriate source and sink terms. The classic Hertz-Knudsen expression is employed to resolve the evaporation rate and the associated water mass depletion in the system. Both latent heat of vaporization and residual decay heat are considered as sink and source in the energy conservation, respectively. The model is employed to simulate vacuum drying of spent nuclear fuel rod storage systems. Multistage stepwise vacuuming of the system is emulated, and several parametric studies are conducted to identify their role in the drying process. The predicted temporal profiles show that the proposed model is able to capture qualitative trends of the water removal rate, hence the dryness level of the system. The model prediction is also compared against experiments where the amount of residual water after a standard vacuum drying procedure is quantified. The predictions are found to compare favorably with the experimental measurements.