ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
November 2024
Nuclear Technology
Fusion Science and Technology
Latest News
The D&D of SM-1A
With the recent mobilization at the site of the former SM-1A nuclear power plant at Fort Greely, Alaska, the Radiological Health Physics Regional Center of Expertise, located at the U.S. Army Corps of Engineers’ Baltimore District, began its work toward the decommissioning and dismantlement of its third nuclear power plant, this time located just 175 miles south of the Arctic Circle.
Germina Ilas, Joseph R. Burns
Nuclear Technology | Volume 208 | Number 3 | March 2022 | Pages 403-413
Technical Paper | doi.org/10.1080/00295450.2021.1935165
Articles are hosted by Taylor and Francis Online.
Energy release from the decay of radionuclides in nuclear fuel after its discharge from reactor is a critical parameter for design, safety, and licensing analyses of used nuclear fuel storage, transportation, and repository systems. Well-validated computational tools and nuclear data are essential for decay heat prediction. This paper summarizes the validation of the SCALE nuclear analysis code system version 6.2.4, used with ENDF/B-VII.1 libraries, for decay heat analysis of light water reactor used fuel. The experimental data used for validation include full-assembly decay heat measurements that cover assembly burnups of 5 to 51 GWd/tonne U, cooling times after discharge in the 2- to 27-year range, and initial fuel enrichments up to 4 wt% 235U. The comparison between calculated (C) and experimental (E) decay heat showed very good agreement, with an average C/E over all considered measurements of 1.006 (σ = 0.016) for pressurized water reactor and 0.984 (σ = 0.077) for boiling water reactor assembly measurements. The effect of using assembly-average versus axially varying modeling data on the calculated decay heat, important to thermal analyses for used fuel transportation and storage systems, is discussed.